Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture.
نویسندگان
چکیده
Onychophora are ancient, carnivorous soft-bodied invertebrates which capture their prey in slime that originates from dedicated glands located on either side of the head. While the biochemical composition of the slime is known, its unusual nature and the mechanism of ensnaring thread formation have remained elusive. We have examined gene expression in the slime gland from an Australian onychophoran, Euperipatoides rowelli, and matched expressed sequence tags to separated proteins from the slime. The analysis revealed three categories of protein present: unique high-molecular-weight proline-rich proteins, and smaller concentrations of lectins and small peptides, the latter two likely to act as protease inhibitors and antimicrobial agents. The predominant proline-rich proteins (200 kDa+) are composed of tandem repeated motifs and distinguished by an unusually high proline and charged residue content. Unlike the highly structured proteins such as silks used for prey capture by spiders and insects, these proteins lack ordered secondary structure over their entire length. We propose that on expulsion of slime from the gland onto prey, evaporative water loss triggers a glass transition change in the protein solution, resulting in adhesive and enmeshing thread formation, assisted by cross-linking of complementary charged and hydrophobic regions of the protein. Euperipatoides rowelli has developed an entirely new method of capturing prey by harnessing disordered proteins rather than structured, silk-like proteins.
منابع مشابه
Spider orb webs rely on radial threads to absorb prey kinetic energy.
The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank a...
متن کاملEvidence for diet effects on the composition of silk proteins produced by spiders.
Silks are highly expressed, secreted proteins that represent a substantial metabolic cost to the insects and spiders that produce them. Female spiders in the superfamily Araneoidea (the orb-spinning spiders and their close relatives) spin six different kinds of silk (three fibroins and three fibrous protein glues) that differ in amino acid content and protein structure. In addition to this dive...
متن کاملCatching Prey in Mid-Flight
154 Prion 2008; Vol. 2 Issue 4 Biomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two prope...
متن کاملSpider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due...
متن کاملSpider web glue: two proteins expressed from opposite strands of the same DNA sequence.
The various silks that make up the web of the orb web spiders have been studied extensively. However, success in prey capture depends as much on the web glue as on the fibers. Spider silk glue, which is considered one of the strongest and most effective biological glues, is an aqueous solution secreted from the orb weaving spider's aggregate glands and coats the spiral prey capturing threads of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 277 1698 شماره
صفحات -
تاریخ انتشار 2010